Synthesis of Micelles Guided Magnetite (Fe3O4) Hollow Spheres and their application for AC Magnetic Field Responsive Drug Release

نویسنده

  • Madhuri Mandal Goswami
چکیده

This paper reports on synthesis of hollow spheres of magnetite, guided by micelles and their application in drug release by the stimulus responsive technique. Here oleyelamine micelles are used as the core substance for the formation of magnetite nano hollow spheres (NHS). Diameter and shell thickness of NHS have been changed by changing concentration of the micelles. Mechanism of NHS formation has been established by investigating the aliquot collected at different time during the synthesis of NHS. It has been observed that oleyelamine as micelles play an important role to generate hollow-sphere particles of different diameter and thickness just by varying its amount. Structural analysis was done by XRD measurement and morphological measurements, SEM and TEM were performed to confirm the shape and size of the NHS. FTIR measurement support the formation of magnetite phase too. Frequency dependent AC magnetic measurements and AC magnetic field stimulated drug release event by these particles provide a direction of the promising application of these NHS for better cancer treatment in near future. Being hollow &porous in structure and magnetic in nature, such materials will also be useful in other applications such as in removal of toxic materials, magnetic separation etc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles.

This paper reports a type of multifunctional hybrid nanoparticle (NP) composed of gold nanocrystals coated on and/or embedded in a magnetite-fluorescent porous carbon core-shell NP template (Fe3O4@PC-CDs-Au) for biomedical applications, including magnetic/NIR-responsive drug release, multicolor cell imaging, and enhanced photothermal therapy. The synthesis of the Fe3O4@PC-CDs-Au NPs firstly inv...

متن کامل

One-pot reaction to synthesize PEG-coated hollow magnetite nanostructures with excellent magnetic properties.

We first demonstrate a simple "one-pot" method to synthesis uniform Fe3O4 hollow microspheres in the presence of PEG in ethylene glycol by using urea to control their morphologies. The interior cavity of the hollow spheres can be tunable by reaction time. The Lamer model was used to explain the formation of magnetite hollow spherical structures based on the experimental observations. The obtain...

متن کامل

Poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone coated Magnetic nanoparticles as a pH-responsive magnetic Nano-carrier for controlled delivery of antibiotics

Objective(s): Pharmaceutical industries are leading to improved medications that can target diseases more effectively and precisely. Researchers have intended to reformulate drugs so that they may be more safely used in human body. The more targeted a drug is, the lower its chance of triggering drug resistance, a cautionary concern surrounding the use of broad-spectrum antibiotics. The aim of t...

متن کامل

Synthesis and Characterization of Novel Modified and Functionalized Silica Nano-particles for Protein Delivery Applications

In this study, the synthesis, characterization and controlled release behavior of new Hollow Silica Nano particles (HSNPs) and Magnetic Silica Nano Particles (MSNPs) were studied. Magnetic Silica Nano particles (MSNPs), as drug delivery vehicles, were synthesized through the coating of Fe3O4 nano-crystals with silica layers. The HSNPs were obtained by removal of Fe3O4 templates with hydrochlori...

متن کامل

Core-shell magnetic pH-responsive vehicle for delivery of poorly water-soluble rosuvastatin

Objective(s): Development of an oral sustained-controlled release vehicle which, slowly releases the drug and maintains an effective drug concentration for a long time is aimed.Materials and Methods: A biodegradable magnetic polymeric drug delivery vehicle, using superparamagnetic iron oxide nanoparticles encapsulating by polyvinylpyrrolidone-block-polyethylene glycol-block-poly methacrylic aci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016